

GCE

Physics A

Advanced Subsidiary GCE

Unit G481: Mechanics

Mark Scheme for January 2012

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations available in scoris

Annotation	Meaning
	correct response
×	incorrect response
	benefit of the doubt (where professional judgement has been used)
	benefit of the doubt <u>not</u> given
1-(1 -)	error carried forward
	information omitted
[स•]]	contradiction (in cases where candidates contradict themselves in the same response)
	follow through
	error in number of significant figures
101	error in the power of 10 in calculation
AE .	arithmetic or calculation error
11 March 1997	not answered question
?	wrong physics
	reading error

Abbreviations, annotations and conventions used in the detailed Mark Scheme.

- / = alternative and acceptable answers for the same marking point
- (1) = separates marking points
- allow = answers that can be accepted
- **not** = answers which are not worthy of credit
- **reject** = answers which are not worthy of credit
- **ignore** = statements which are irrelevant
- () = words which are not essential to gain credit
- ____ = underlined word (or the equivalent) must be present in answer to score a mark
- ecf = error carried forward
- AW = alternative wording
- ora = or reverse argument

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow answers to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper. Any exception to this rule will be mentioned in the Additional Guidance. (Significant figures are rigorously assessed in the practical skills.)

Q	Question		Answers		Guidance	
1	(a)		acceleration = rate of <u>change</u> of <u>velocity</u>	B1	Allow: $a = \frac{v-u}{t}$ where $v =$ final velocity, $u =$ initial velocity and $t =$ time Allow: 'acceleration = change in <u>velocity</u> over time' Not: 'acceleration = rate of change of <u>speed'</u> Not: mixture of quantity and unit, e.g. 'change of velocity per second'	
	(b)	(i)	$a = \frac{v - u}{t}$ (Any subject)	C1		
			$a = \frac{0-6.0}{2400}$	C1	Allow : $a = 6.0 / 2400$	
			2400 $a = (-) 2.5 \times 10^{-3} \text{ (m s}^{-2})$	A1	Ignore sign	
		(ii)	distance = $\underline{av \text{ speed}} \times \text{time or } v^2 = u^2 + 2as$ distance = 3.0×2400 or $0 = 6.0^2 - (2 \times 2.5 \times 10^{-3} \times s)$	C1	Possible ecf. from (b)(i) Allow: $v^2 = u^2 + 2as$ with $v = 6.0$, $u = 0$ and $a = 0.0025$	
			distance = 7200 (m)	A1	Allow: $v' = u' + 2us'$ with $v = 6.0$, $u = 0$ and $u = 0.0025'$ Allow: Full credit for correct use of $s = ut + \frac{1}{2} at^2$ Note: Bald 7200 (m) scores 2 marks Allow: 1 mark for ' $s = (6 \times 2400) + \frac{1}{2} \times 0.0025 \times 2400^2 = 21600$ (m)'	
		(iii)	Correct shape of curve of <u>decreasing</u> gradient starting from 0,0	M1		
			Graph passes through 40, 7.2	A1	Possible e.c.f. from (b)(ii) Allow the A1 mark if <i>x</i> is between 5-10 km at 40 min	
	(c)	(i)	It has (constant) acceleration / It accelerates (down the ramp)	B1	Allow: Its velocity / speed increases	
		(ii)	The time taken by ball to travel between (successive) bells is the same / 'same as first trolley' / 'there is no change' (AW)	B1		
			Acceleration is independent of mass / acceleration is the same (for the heavier trolley) (AW)	B1		
			Total	11		

Que	Question		Answers	Marks	Guidance
2	(a)		total energy of a (closed) system remains constant or Energy cannot be created or destroyed (it can only be transferred into other forms) or total initial energy = total final energy	B1	Not: 'Energy cannot be created / destroyed / lost'
	(b)		work done = force × distance <u>moved</u> in the direction of the force Unit: N m or J	M1 A1 B1	Allow: 'force × displacement' for the M1 mark Note: The unit mark is an independent mark
	(c)	(i)	<u>kinetic</u> energy \rightarrow heat	B1	Not: friction / deformation / sound / KE of dust / KE of Earth
		(ii)	$(E = \frac{1}{2}mv^{2})$ 8.4 × 10 ¹⁶ = $\frac{1}{2}$ × 3.0 × 10 ⁸ × v ²	C1	Note: This mark is for correct substitution
			$v^{2} = \frac{2 \times 8.4 \times 10^{16}}{3.0 \times 10^{8}}$ or $v = \sqrt{\frac{2 \times 8.4 \times 10^{16}}{3.0 \times 10^{8}}}$	C1	Allow : 2 marks for $v^2 = 5.6 \times 10^8$
			$(v = 2.37 \times 10^4 \text{ m s}^{-1})$	A0	Allow : 1 mark for a bald answer of 2.4×10^4
		(iii)	$8.4\times10^{16}=F\times200$	C1	Possible ecf Allow:
			$F = \frac{8.4 \times 10^{16}}{200}$	C1	$a = (-)\frac{u^2}{2s}$ (2.37×10 ⁴) ² (2×10 ⁴) ²
			force = 4.2×10^{14} (N)	A1	$a = (-)\frac{(2.37 \times 10^4)^2}{2 \times 200} \text{or} a = (-)\frac{(2 \times 10^4)^2}{2 \times 200} \text{C1}$
					$a = 1.4 \times 10^{6} \text{ (m s}^{-2}) \text{ or } a = 1.0 \times 10^{6} \text{ (m s}^{-2}) \text{ C1}$ $F = 3.0 \times 10^{8} \times 1.4 \times 10^{6} \text{ or } F = 3.0 \times 10^{8} \times 1.0 \times 10^{6}$
					force = 4.2×10^{14} (N) or force = 3.0×10^{14} (N) A1
			Total	10	

Question		Answers		Guidance	
3	(a)	A straight line through the origin	B1	Ignore graph after 0.5 s.	
	(b)	The speed (of the car) is constant	B1	Note: This can only be scored if (a) is correct	
	(c)	The <u>distance</u> travelled by the car after the brakes are applied until the car stops	B1	Note: Must have reference to car 'stopping' to score the mark	
	(d)	Mass (of car) ($\frac{1}{2}mv^2 = Fx$, hence braking) distance ∞ mass	M1 A1	Must use tick or cross on Scoris to show if the mark is awarded Allow: weight (of car) Not: 'distance increases with mass' Allow: distance $\propto m$	
		Speed / velocity (of car) ($\frac{1}{2}mv^2 = Fx$, hence braking) distance \propto speed ²	M1 A1	Not : 'distance increases with speed' Allow : distance $\propto v^2$	
	(e)	Increases time (of impact / to slow down) / increases the distance (travelled by the driver)	B1	Must use tick or cross on Scoris to show if the mark is awarded	
		Smaller deceleration / acceleration	B1	Not: 'slow down acceleration'	
		Force is smaller because $F = ma$ and a is smaller or force is smaller because $F = E_k/x$ and x is bigger or force is smaller because $F = \frac{\Delta p}{\Delta t}$ and Δt is bigger	B1	Allow : $E_k = Fx$ and x is bigger	
				Not: Prevent crashing into windscreen / steering wheel	
		Total	10		

Q	Question		Answers	Marks	Guidance	
4	(a)		moment = force × <u>perpendicular</u> distance from <u>point</u> / <u>pivot</u> Cartern perpendicular to be included and spelled correctly to gain the B1 mark	B1	Must use tick or cross on Scoris to show if the mark is awarded	
	(b)		Net force = 0	B1	Not : 'All forces are equal' or 'forces are balanced' or 'total forces up = total forces down'	
			Net moment / torque = 0	B1	Allow : ' <u>sum</u> of clockwise moments = <u>sum</u> of anticlockwise moments'	
	(c)	(i)	The point where the weight (appears) to act	B1	Not : 'The point where gravity acts' or 'point where mass acts/is concentrated'	
		(ii)	moment = (0.150 × 18) + (0.460 × 30) moment = 16.5 (N m)	C1 A1	Allow: 2 sf answer of 17 N	
		(iii)	1 Same / equal to 16.5 (N m) / equal to clockwise moment 2	B1	Possible ecf	
			(perpendicular) distance between elbow and (the line of action of) <i>F</i> decreases or (the vertical force) $F \cos \theta$ is the same or $F \cos \theta = 412.5$	M1		
			or $F \propto \frac{1}{\cos \theta}$			
			Hence the force increases	A1		
			Total	9		

Q	uestion	Answers		Guidance	
5	(a)	mass = $\frac{590}{9.8(1)}$ (= 60 kg)	B1	Allow: weight = $60 \times 9.8(1)$ Allow: $60 \times 9.8(1) = 588$ (N) or $60 \times 9.8(1) = 590$ (N)	
	(b)	net force = 60 × 0.50 (= 30 N)			
		<i>R</i> = 590 + 30	C1		
		<i>R</i> = 620 (N)	A1	Allow: 1 mark for '590 – 30 = 560 (N)'	
	(c)	<u>resultant</u> force = 0 / ' $a = 0$ and $F = ma = 0$ '	B1	Not: Acceleration = 0 or 'forces are balanced'	
	(d)	weight > R (for deceleration) / $R = 590 - 60a$ / $R = mg - ma$ Hence R decreases	M1 A1	Allow: W or mg for 'weight'	
		Total	6		

Question		on	Answers	Marks	Guidance	
6	(a)		The extension ∞ (applied) force (on spring) (as long as the elastic limit is not exceeded)			
	(b)	(i)	Gradient / slope (of line / graph) / force divided by extension The term gradient /slope / divided to be included and spelled correctly to gain the B1 mark	B1	Must use tick or cross on Scoris to show if the mark is awarded	
		(ii)	Area (under the graph / line)	B1	Allow: $\frac{1}{2} \times \text{force} \times \text{extension}$ Allow: $\frac{1}{2} \times \text{force constant} \times \text{extension}^2$ if (b)(i) is correct	
	(c)		The extension (for the combination) is doubled Force (for each spring) is the same / constant (force constant = force/extension, hence it is halved)	B1 B1	Allow: 1 mark for ' <i>F</i> is the same, <i>x</i> is doubled' Allow: 2 marks for 'the springs need half the force to give the same (total) extension'	
	(d)	(i)	Young modulus = stress/strain As long as the elastic limit is not exceeded / in the linear region of stress against strain graph / Hooke's law is obeyed	M1 A1		
		(ii) 1	stress = $\frac{4.2}{0.20 \times 10^{-6}}$ stress = 2.1 × 10 ⁷ (Pa)	C1 A1	Allow : 1 mark for 2.1×10^n , n \neq 7	
		(ii) 2	Young modulus = $\frac{2.1 \times 10^7}{0.015}$ Young modulus = 1.4×10^9 (Pa)	C1 A1	Possible ecf from (ii)1	
		(ii) 3	energy = $\frac{1}{2}Fx$ $x = 0.70 \times 0.015$ / $x = 0.0105$ (m) energy = $\frac{1}{2} \times 4.2 \times (0.70 \times 0.015)$ energy = 2.2×10^{-2} (J)	C1 C1 A1		
			Total	14		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

