

GCE

Physics A

Advanced Subsidiary GCE

Unit G481: Mechanics

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

G481

- 1. Abbreviations, annotations and conventions used in the detailed Mark Scheme.
 - / = alternative and acceptable answers for the same marking point
 - (1) = separates marking points
 - **allow** = answers that can be accepted
 - **not** = answers which are not worthy of credit
 - **reject** = answers which are not worthy of credit
 - **ignore** = statements which are irrelevant
 - () = words which are not essential to gain credit
 - = underlined words must be present in answer to score a mark
 - ecf = error carried forward
 - AW = alternative wording
 - ora = or reverse argument
- 2. Annotations: the following annotations are available on SCORIS.
 - ✓ = correct response
 - × = incorrect response
 - AE = arithmetic error
 - BOD = benefit of the doubt (where professional judgement has been used)
 - NBOD = benefit of the doubt <u>**not**</u> given
 - ECF = error carried forward
 - ^ = information omitted
 - CON = contradiction (in cases where candidates contradict themselves in the same response)
 - RE = rounding error
 - SF = error in the number of significant figures
 - POT = error in the power of 10 in a calculation
 - ? = wrong physics or equation
 - NAQ = not answered question
 - FT = follow through

G481

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Q 1	Expected Answers	Marks	Additional Guidance
a	work done \rightarrow N m	B2	Allow 2 marks if all correct
	stress $\rightarrow N m^{-2}$		Allow 1 mark if one or two responses are correct
	density \rightarrow kg m ⁻³		
b(i)	weight / gravitational force	B1	Not 'gravity'
b(ii)	$(force =) 4.8 \times 9.81 (= 47.1 \text{ N})$	C1	
	pressure = $\frac{4.8 \times 9.81}{0.085 \times 0.085}$ pressure = 6.52×10^3 (Pa)	A1	Note: 2 marks for bald 2 sf answer of 6.5×10^3 (Pa) Allow 1 mark for '48/0.085 ² = 6.64×10^3 '; g taken as 10 (N kg ⁻¹) Allow 1 mark for '4.8 × 9.81/8.5 ² = 0.65' Not 'mass/area' since it is 'wrong physics'.
b(iii)	8	B1	
	4	B 1	
	2	B1	This must be consistent with the values for mass and cross- sectional area.
	Total	8	

Expected Answers	Marks	Additional Guidance
The <u>distance</u> travelled (by the car) from when the driver sees a problem and the brakes are applied	B1	Note : There must be reference to 'stimulus' and brakes. Not : 'speed × reaction time'
Distance / displacement	B1	
distance = 20×0.5 distance = 10 (m)	B1	
distance = area under graph		
distance = $\frac{1}{2} \times 20 \times 3.5$	C1	
distance = 35 (m)	A1	Allow 1 mark if stopping distance of 45 m quoted No marks for an answer of $20 \times 3.5 = 70$ (m)
gradient = 'acceleration' / $a = \frac{v - u}{t} / a = \frac{\Delta v}{\Delta t}$	C1	The first mark is for selecting correct equation or stating $a =$ gradient
$a = (-)\frac{20}{3.5}$ deceleration = 5.71(4) \approx 5.7 (m s ²)	A1	Note: Ignore negative sign
force = 910×5.71	C1	
force ≈ 5200 (N)	A1	Possible ecf from (d)(i)
Increases by a factor of 4	B1	
Braking distance \propto speed ² / ' $Fx = \frac{1}{2} mv^2$ ' / speed doubles <u>and</u> time doubles	B1	
	The <u>distance</u> travelled (by the car) from when the driver sees a problem and the brakes are applied Distance / displacement distance = 20 × 0.5 distance = 10 (m) distance = area under graph distance = $\frac{1}{2} \times 20 \times 3.5$ distance = $\frac{3}{2} \times 20 \times 3.5$	The distance driver sees a problem and the brakes are appliedB1Distance / displacementB1distance = 20 × 0.5 distance = 10 (m)B1distance = area under graph distance = $\frac{1}{2} \times 20 \times 3.5$ C1distance = $\frac{1}{2} \times 20 \times 3.5$ C1distance = 35 (m)A1gradient = 'acceleration' / $a = \frac{v - u}{t} / a = \frac{\Delta v}{\Delta t}$ C1 $a = (-) \frac{20}{3.5}$ deceleration = $5.71(4) \approx 5.7 \text{ (m s}^2)$ A1force = 910 × 5.71 force $\approx 5200 \text{ (N)}$ C1Increases by a factor of 4 Braking distance \propto speed² /B1

G481

Mark Scheme

Q2	Expected Answers	Marks	Additional Guidance
f			Must use ticks on Scoris to show where the marks are awarded
	Large deceleration / rapid decrease in speed (triggers the air bag)	B1	Not 'quick / sudden / rapid deceleration' Not 'large acceleration'
	Prevent collision with steering wheel / windscreen / dashboard	B1	
	Time (for stopping) is more / distance (for stopping) is more	B1	
	Smaller deceleration / acceleration (of person)	B1	Allow: 'smaller rate of change of momentum' Not 'smaller <u>rate</u> of deceleration'
	Total	15	

Q3	Expected Answers	Marks	Additional Guidance
а	work (done) = force \times distance <u>moved</u> in the direction of force	B1	Allow: work = force × displacement in direction of force Not: work (done) = energy transfer
b(i)	(Net /total /resultant force is) zero	B1	
	The <u>acceleration</u> is zero	B1	Not ' $a = 0$ '
b(ii)	$9.0 \times 10^3 \cos 83^\circ$ or $9.0 \times 10^3 \sin 7^\circ$	C1	
	1.1×10^3 (N)	A1	Not '9.0 × $10^3 \cos 7^\circ$ '
b(iii)	work done per second = 300×18		
	work done per second = 5400 (J s ⁻¹)	B1	
b(iv)	(total force down slope =) 1100 + 300 (N) (power =) 1400 × 18	C1 C1	Allow: 1400 (N)
	(power =) 2.52×10^4 (W) or 2.5×10^4 (W)	A1	Possible ecf from (b)(ii)
	or		
	rate of work done against weight = $1.1 \times 10^3 \times 18$ (= 19800 W) power = 19800+ 5400	C1 C1	Allow: ' $Fx\cos\theta = 9.0 \times 10^3 \times 18 \times \cos 83^\circ$ '
	power = 2.52×10^4 (W) or 2.5×10^4 (W)	A1	Possible ecf from (b)(ii) and (b)(iii)
	Total	9	

Q4	Expected Answers	Marks	Additional Guidance
a	kinetic energy = $\frac{1}{2} \times \text{mass} \times \text{speed}^2$	B1	Allow KE = $\frac{1}{2}mv^2$, where $m = \text{mass}$ and $v = \text{speed}$
			Allow velocity instead of speed
			Not : $KE = \frac{1}{2} mv^2$ on its own
b(i)	initial KE = $\frac{1}{2} \times 3.0 \times 10^{-2} \times 200^{2}$ (= 600 J)	C1	
D(I)	final KE = $\frac{1}{2} \times 3.0 \times 10^{-2} \times 50^{2}$ (= 37.5 J)	C1 C1	
	Loss in KE = $600 - 37.5$	U1	
	$L_{000} = 57.5$		
	Loss in KE = 562.5 (J) ≈ 560 (J)	A1	Special case : 1 mark for 'KE = $\frac{1}{2} m v^2$ loss in KE = ($\frac{1}{2} \times 3.0 \times 10^{-2} \times 200 - \frac{1}{2} \times 3.0 \times 10^{-2} \times 50 =$) 2.25 (J)' Note: No marks for 337.5 (J) when Δv used in the KE equation ($\frac{1}{2} \times 3.0 \times 10^{-2} \times 150^2 = 337.5$ J)
b(ii)	work done = (loss in) KE / $a = (v^2 - u^2)/2s$		
	$F \times 1.5 \times 10^{-2} = 562.5$ / $a = (-) 1.25 \times 10^{6}$	C1	Possible ecf from (b)(i)
	force = 3.75×10^4 (N)	A1	Allow: A 2 sf answer of either 3.8×10^4 (N) or 3.7×10^4 (N)
	Total	6	

Q5	Expected Answers	Marks	Additional Guidance
a	incorrect	M1	In question 5, use tick or cross on Scoris to show if the mark is awarded
	Mass (of the particle) increases (as it approaches speed of light)	A1	Not: mass <i>changes</i>
b	correct	M1	
	KE is changed into (G)PE or (G)PE is changed into KE or change in KE = change in (G)PE (AW)	A1	Note : This mark is for stating the transfer of energy between kinetic and (gravitational) potential
c	incorrect	M1	Allow alternative response: incorrect M1
	Weight is equal to drag / air resistance / friction (and not acceleration of free fall)	A1	Acceleration and weight are not the same quantities (AW) A1
d	incorrect	M1	
	The technique is trilateration	A1	Note 1 mark if 'trilateration' is misspelled but candidate has mentioned that the statement is incorrect
	✓ The term <i>trilateration</i> to be included and spelled correctly to gain the A1 mark		
	Total	8	

Q6	Expected Answers	Marks	Additional Guidance
а	A pair of <u>equal</u> and <u>opposite</u> forces (with their lines of action separated by a distance)	B1	Must use tick or cross on Scoris to show if the mark is awarded
	The term <i>opposite</i> to be included and spelled correctly to gain mark		No mark can be scored if there is no reference 'opposite'. (Allow 'opposing')
b(i)	moment = force × <u>perpendicular</u> distance from pivot / axis / point	B1	
b(ii)	(clockwise moment =) 20×0.60 and (anticlockwise moments =) $10 \times 0.20 + 30 \times 0.30$	M1	Allow a correct moments equation involving all three forces
	(Not in equilibrium because) clockwise moment ≠ anticlockwise moment / clockwise moment > anticlockwise moment / 12 (Nm) > 11 (Nm) / 12 (Nm) ≠ 11 (Nm)	A1	
	Total	4	

Q7	Expected Answers	Marks	Additional Guidance
a(i)	Y (is brittle)	B1	
a(ii)	(Both) obey Hooke's law	B1	Allow (For both) stress ∞ strain / elastic (behaviour) / 'not plastic (behaviour)' / force ∞ extension Not: 'straight line(s)'
a(iii)	Gradient (of the linear section) is equal to Young Modulus / gradient is largest	B1	Allow: 'slope' for 'gradient'
	X (has largest Young modulus)	B1	
b	(force increases by a factor of) 30^2 force = 240×30^2	C1	
	force = 2.16×10^5 (N)	A1	Allow : 1 mark for value of breaking stress of $1.2(2) \times 10^9$ (Pa)
	Total	6	

Q8	Expected Answers	Marks	Additional Guidance
a	time = $1.2/8.0$	M1	Note: The mark is for dividing the distance by the speed –
	time = 0.15 (s)	A0	hence must be seen
b	$s = ut + \frac{1}{2}at^2$ and $u = 0$ / $s = \frac{1}{2}at^2$ /	C1	
	$h = \frac{1}{2} \times 9.81 \times 0.15^2$		
	h = 0.11 (m)	A1	
c	They both have same (vertical) acceleration / same acceleration of free fall / acceleration of 9.8 \underline{ms}^{-2} (and zero initial vertical velocity)	B1	Note: Must have reference to both objects
	Total	4	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

