

Advanced GCE Physics A (H556) Data, Formulae, and Relationships Booklet

The information in this booklet is for the use of candidates following the Advanced GCE in Physics A (H556) course.

The data, formulae and relationships in this datasheet will be printed for distribution with the examination papers.

Copies of this booklet may be used for teaching.

This document consists of 8 pages.

Data, Formulae and Relationships

Data

Values are given to three significant figures, except where more – or fewer – are useful.

Physical constants

acceleration of free fall	g	9.81 m s ^{−2}
elementary charge	е	$1.60 \times 10^{-19} \text{ C}$
speed of light in a vacuum	С	$3.00 \times 10^8 \text{ m s}^{-1}$
Planck constant	h	6.63 × 10 ^{−34} J s
Avogadro constant	N _A	$6.02 \times 10^{23} \text{ mol}^{-1}$
molar gas constant	R	8.31 J mol ⁻¹ K ⁻¹
Boltzmann constant	k	$1.38 \times 10^{-23} \text{ J K}^{-1}$
gravitational constant	G	$6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
permittivity of free space	ε	$8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \text{ (F m}^{-1})$
electron rest mass	m _e	$9.11 \times 10^{-31} \text{ kg}$
proton rest mass	m _p	1.673 × 10 ⁻²⁷ kg
neutron rest mass	m _n	$1.675 \times 10^{-27} \text{ kg}$
alpha particle rest mass	m_{lpha}	$6.646 \times 10^{-27} \text{ kg}$
Stefan constant	σ	$5.67\times 10^{^{-8}}Wm^{^{-2}}K^{^{-4}}$
Quarks		

Quarks

up quark	charge = $+\frac{2}{3}e$
down quark	charge = $-\frac{1}{3}e$
strange quark	charge = $-\frac{1}{3}e$

Conversion factors

unified atomic mass unit	$1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$
electronvolt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
day	$1 \text{ day} = 8.64 \times 10^4 \text{ s}$
year	1 year $\approx 3.16 \times 10^7$ s
light year	1 light year $\approx 9.5 \times 10^{15} \mbox{ m}$
parsec	1 parsec $\approx 3.1 \times 10^{16}$ m

Mathematical equations

arc length = $r\theta$

circumference of circle = $2\pi r$ area of circle = πr^2 curved surface area of cylinder = $2\pi rh$ surface area of sphere = $4\pi r^2$ area of trapezium = $\frac{1}{2}(a+b)h$

volume of cylinder = $\pi l^2 h$

volume of sphere = $\frac{4}{3}\pi r^3$

Pythagoras' theorem: $a^2 = b^2 + c^2$

cosine rule: $a^2 = b^2 + c^2 - 2bc\cos A$

sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ sin $\theta \approx \tan \theta \approx \theta$ and cos $\theta \approx 1$ for small angles $\log(AB) = \log(A) + \log(B)$

(Note: $Ig = Iog_{10}$ and $In = Iog_e$)

$$\log\left(\frac{A}{B}\right) = \log(A) - \log(B)$$
$$\log(x^n) = n \log(x)$$
$$\ln(e^{kx}) = kx$$

Formulae and relationships

Module 2 – Foundations of physics	
vectors	$F_{\rm x} = F \cos \theta$
	$F_{y} = F \sin \theta$
Module 3 – Forces and motion	
uniformly accelerated motion	v = u + at
	$s = \frac{1}{2}(u+v)t$
	$s = ut + \frac{1}{2}at^2$
	$v^2 = u^2 + 2as$
force	$\boldsymbol{F} = \frac{\Delta \boldsymbol{p}}{\Delta t}$
	p = mv
turning effects	moment = Fx
	torque = Fd
density	$\rho = \frac{m}{V}$
pressure	$p = \frac{F}{A}$
	$p = h \rho g$
work, energy and power	$W = Fx \cos \theta$
	efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100\%$
	$P = \frac{W}{t}$
	P = Fv
springs and materials	F = kx
	$\boldsymbol{E} = \frac{1}{2} \boldsymbol{F} \boldsymbol{x} ; \boldsymbol{E} = \frac{1}{2} \boldsymbol{k} \boldsymbol{x}^2$
	$\sigma = \frac{F}{A}$
	$\varepsilon = \frac{x}{L}$
	$E = \frac{\sigma}{\varepsilon}$

would 4 - Liechons, waves and photons	
charge	$\Delta Q = I \Delta t$
current	I = Anev
work done	$W = VQ; W = \mathcal{E}Q; W = V/t$
resistance and resistors	$R = \frac{\rho L}{A}$
	$R = R_1 + R_2 + \dots$
	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
power	$P = VI, P = I^2 R$ and $P = \frac{V^2}{R}$
internal resistance	$\mathcal{E} = I(R + r); \mathcal{E} = V + Ir$
potential divider	$V_{\text{out}} = \frac{R_2}{R_1 + R_2} \times V_{\text{in}}$
	$\frac{V_1}{V_2} = \frac{R_1}{R_2}$
waves	$v = f\lambda$ $f = \frac{1}{T}$ $I = \frac{P}{A}$
	$\lambda = \frac{a x}{D}$
refraction	$n = \frac{c}{v}$
	$n\sin\theta$ = constant
	$\sin C = \frac{1}{n}$
quantum physics	$E = hf$ $E = \frac{hc}{\lambda}$
	$hf = \phi + KE_{max}$
	$\lambda = \frac{h}{p}$

Module 4 – Electrons, waves and photons

Module 5 – Newtonian world and astrophy	/sics
thermal physics	$E = mc \Delta \theta$
	E = mL
ideal gases	pV = NkT; pV = nRT
	$pV = \frac{1}{3}Nm \overline{c^2}$
	$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT$
	$E = \frac{3}{2}kT$
circular motion	$\omega = \frac{2\pi}{T}; \ \omega = 2\pi f$
	$V = \omega r$
	$a = \frac{v^2}{r}$; $a = \omega^2 r$
	$F = \frac{mv^2}{r}; F = m\omega^2 r$
oscillations	$\omega = \frac{2\pi}{T}; \ \omega = 2\pi f$
	$a = -\omega^2 x$
	$x = A\cos\omega t; x = A\sin\omega t$
	$v = \pm \omega \sqrt{A^2 - x^2}$
gravitational field	$g = \frac{F}{m}$
	$F = -\frac{GMm}{r^2}$
	$g = -\frac{GM}{r^2}$
	$T^{2} = \left(\frac{4\pi^{2}}{GM}\right)r^{3}$
	$V_{\rm g} = -\frac{GM}{r}$
	energy = $-\frac{GMm}{r}$
astrophysics	$hf = \Delta E; \frac{hc}{\lambda} = \Delta E$
	$d\sin\theta = n\lambda$
	$\lambda_{\max} \propto \frac{1}{T}$
	$L = 4\pi r^2 \sigma T^4$

Module 5 – Newtonian world and astrophysics

cosmology	$\frac{\Delta\lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}$
	$p = \frac{1}{d}$
	$v = H_0 d$
	$t = H_0^{-1}$
Module 6 – Particles and medical physics	
capacitance and capacitors	$C = \frac{Q}{V}$
	$C = \frac{\boldsymbol{\varepsilon}_0 \boldsymbol{A}}{\boldsymbol{d}}$
	$C = 4\pi\varepsilon_0 R$
	$C = C_1 + C_2 + \dots$
	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
	$W = \frac{1}{2}QV; W = \frac{1}{2}\frac{Q^2}{C}; W = \frac{1}{2}V^2C$
	$\tau = CR$
	$x = x_0 e^{-\frac{t}{CR}}$
	$\mathbf{X} = \mathbf{X}_0 (1 - \mathrm{e}^{-\frac{t}{CR}})$
electric field	$E = \frac{F}{Q}$
	$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$
	$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$ $E = \frac{Q}{4\pi\varepsilon_0 r^2}$
	$E = \frac{V}{d}$
	$V = \frac{Q}{4\pi\varepsilon_0 r}$
	energy = $\frac{Qq}{4\pi\varepsilon_0 r}$

magnetic field $F = BILsin\theta$ F = BQv

electromagnetism	$\phi = BA\cos\theta$
electionagriction	
	$\mathcal{E} = - \frac{\Delta(N\phi)}{2}$
	Δt
	$\frac{n_s}{n_p} = \frac{V_s}{V_p} = \frac{I_p}{I_s}$
	$\overline{n_{P}} - \overline{V_{P}} - \overline{I_{s}}$
radius of nucleus	$R = r_0 A^{1/3}$
radioactivity	$A = \lambda N; \frac{\Delta N}{\Delta t} = -\lambda N$
	$\Delta t = \lambda t dt$
	$\lambda t_{1/2} = \ln(2)$
	$A = A_0 e^{-\lambda t}$
	$N = N_0 e^{-\lambda t}$
Einstein's mass-energy equation	$\Delta E = \Delta mc^2$
attenuation of X-rays	$I = I_0 e^{-\mu x}$
ultrasound	$Z = \rho c$
	$I_{r} = (Z_2 - Z_1)^2$
	$\frac{I_{\rm r}}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$
	$\Delta f = 2v\cos\theta$
	f C