

Biology

Advanced GCE F211

Cells, Exchange and Transport

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

C	luesti	ion	Expected Answers	Marks	Additional Guidance
1	(a)	(i)	 A = plasma / cell surface, membrane ; B = DNA / chromosome / chromatin / genetic material ; 	2	DO NOT CREDIT membrane, cell membrane DO NOT CREDIT chromosomes (do not accept plural) CREDIT loop of / circle of, DNA DO NOT CREDIT plasmid, RNA ACCEPT nucleoid
1	(a)	(ii)	production of ATP ; <u>aerobic</u> respiration ;	max 1	ACCEPT named stages of aerobic respiration e.g. Krebs cycle, oxidative phosphorylation, ETC, chemiosmosis, link reaction, substrate level phosphorylation DO NOT CREDIT glycolysis, ATP <i>for</i> respiration DO NOT CREDIT <i>produce</i> energy (in form of ATP) IGNORE provide / release energy unqualified
1	(a)	(iii)	protein synthesis / translation ; photosynthesis / described ;	2	ACCEPT production / creation, of proteins / polypeptides, assembly of proteins from amino acids IGNORE autotrophic nutrition DO NOT CREDIT absorption of light unqualified
1	(b)		large surface area to volume ratio ; small so demand for, O_2 / CO_2 , is low ;		ACCEPT large SA:Vol or large SA/Vol ACCEPT small Vol:SA ratio or small Vol/SA DO NOT CREDIT large surface area alone IGNORE gases alone, nutrients
			<i>idea of:</i> <u>diffus</u> ion (alone) is adequate to meet needs ;	2	ACCEPT <i>idea of</i> : body SA large enough to meet needs by <u>diffus</u> ion ACCEPT idea of : <u>diffus</u> ion distance short

F211

Question		Expected Answers		Marks	Additional Guidance
1 (c)	cell / tissue	function in the lungs recoil OR return to original, size / shape OR			IGNORE stretch / expand ACCEPT ref to lungs, alveoli, airways recoiling etc DO NOT CREDIT ref trachea / bronchi recoiling
		to help expel air OR prevents alveoli bursting waft / wave / move / AW, mucus	;		ACCEPT transport / remove, mucus DO NOT CREDIT dirt particles without ref to mucus
		secrete / release / produce, mucus	;		DO NOT CREDIT excrete mucus
	constrict	constrict the airway / AW	;	4	ACCEPT narrows lumen OR controls, airflow / diameter, of airways DO NOT CREDIT ref to alveoli OR greater airflow
	Total			11	

Q	Question		Expected Answers	Marks	Additional Guidance
2	(a)		visible / can be seen / increase contrast ; named example of what is now visible (after staining) ;		 First mark is for 'seeing' and the second mark is for 'recognising' what can now be seen. ACCEPT see detail IGNORE ref to resolution ACCEPT recognise different <i>types</i> of white blood cell ACCEPT can (now) see, nucleus / organelles / named organelles IGNORE recognise parts inside red blood cell IGNORE can now see red blood cells (already visible)
				2	'can now see red and white blood cells' = 2 marks
2	(b)	(i)	3D shape can be seen / greater depth of field ;		DO NOT CREDIT shape alone
			can see, surface features / detail ;	max 1	ACCEPT 'you can see what is on the surface' IGNORE 'you see the surface better' because this needs further clarification i.e. features, shape, named structure
		(ii)	smaller / named, organelle (becomes visible) ; shapes / details of organelles ;	max 1	ACCEPT named structure(s) such as lysosome, RER, mitochondrion, ribosome, Golgi , vesicle, nucleolus DO NOT CREDIT nucleus or chloroplast (already visible)

G	luest	ion	Expected Answers	Marks	Additional Guidance
2	(c)		<i>This is a QWC question</i> 1 fetal <u>haemoglobin</u> has a high <u>er</u> <u>affinity</u> (for oxygen) (than adult haemoglobin) ;		IGNORE oxyhaemoglobin for haemoglobin ACCEPT Hb for <u>haemoglobin</u> (but not HbO)
			2 (fetal Hb) takes up oxygen in low(er) partial pressure of oxygen ;		ACCEPT fetal Hb becomes <i>more</i> saturated at a <i>low(er)</i> partial pressure of oxygen ACCEPT $ppO_2/pO_2/oxygen$ tension / O_2 concentration, for partial pressure of oxygen
			3 placenta has low partial pressure of oxygen ;		
			4 at low partial pressure of oxygen / in placenta, adult (oxy)haemoglobin will dissociate / AW ;	max 3	ACCEPT in placenta mother's haemoglobin, releases its oxygen / saturation drops
			QWC (two terms used in correct context and spelt correctly);	max 1	Any two terms from the following: affinity, dissociate / dissociation, placenta, partial pressure / oxygen tension, saturation / saturated

C	luesti	ion	Expected Answers	Marks	Additional Guidance
2	(d)	(i)	curve to right of curve A ; appropriate sigmoid shape ;	2	Curve should start at 0% on y axis and reach at least 80% on y axis
2	(d)	(ii)	 1 (actively respiring tissue) needs / requires, more oxygen ; 2 for aerobic respiration / to release more energy ; 		<i>idea</i> of ' <i>more</i> ' should be clear as shown (MP 1,2,3,6) ACCEPT make <i>more</i> ATP ACCEPT produces <i>a lot</i> of CO ₂ / as CO ₂ levels rise
			 3 (actively respiring tissue produces) more CO₂ ; 4 haemoglobin involved in transport of CO₂; 		CREDIT detail to include carbonic acid dissociation / formation of haemoglobinic acid / HHb etc
			${\bf 5}$ less haemoglobin available to combine with ${\rm O}_2$;		DO NOT CREDIT oxygen released <i>more</i> quickly / quicker ACCEPT oxygen released <i>more</i> , readily / easily
			6 (Bohr shift) causes <i>more</i> oxygen to be released ;	max 2	'More CO ₂ produced so more O ₂ released' = 2 marks
			Total	12	

C	uest	ion	Expected Answers	Marks	Additional Guidance
3	(a)	(i)	1 at low temperatures, all stain is in cells OR no stain in surrounding solution ;		 MP 1 awarded for observation that the stain was no longer in the surrounding solution and not for the % of cells containing the stain. ACCEPT the stain is not evenly distributed between cells and solution ACCEPT stain doesn't move out of cells
			2 (taken up / held) against, diffusion / concentration, gradient ;		ACCEPT up the diffusion gradient
			3 at high temperature stain not held in cells ;		ACCEPT solution now contains stain ACCEPT 0% = none / no cells (stained)
			4 at high temperature enzymes denatured so no ATP for active transport (of stain) ;		 MP 1 and 3 - must be stated rather than inferred from quoted figs IGNORE 'enzymes denatured' alone CREDIT active transport / carrier, proteins denatured ACCEPT mitochondria stopped working so no ATP produced
			5 use of correct comparative figs to illustrate a point ;		e.g. 97% at 30°C but 0% at 80°C IGNORE figs without units
			AVP ; ;	max 2	

G	uest	ion	Expected Answers	Marks	Additional Guidance
3	(a)	(ii)	cells, dead / not respiring ;		DO NOT CREDIT 'burst' as these cannot be seen
					ACCEPT inhibitor present / membrane impermeable
			no, (metabolic) energy / ATP, to take up stain ;		ACCEPT no functioning mitochondria
			AVP ;	max1	
3	(b)	(i)			Mark first suggestion and if correct award mark – if further answers contradict first answer do not award mark.
			(membrane) structure disrupted ;		ACCEPT damaged, destroyed, break down
					IGNORE membrane, denatured / more fluid
			(phospho)lipid bilayer, melts / more fluid ;		IGNORE lipid molecules melt
			(membrane) proteins / carrier molecules, denatured / unable to function ;		ACCEPT lose shape for denatured
			(membrane) becomes more permeable ;	max 1	ACCEPT leaky IGNORE refs to bonds breaking

Q	Question		Expected Answers	Marks	Additional Guidance
3	(b)	(ii)	membrane <u>permeable</u> (to stain) ;		IGNORE leaky
			methylene blue, leaked out of cells / released to solution ; by diffusion / down concentration gradient ;		 ACCEPT stain / blue / pigment, moved out IGNORE lost <i>colour / colour</i> moved out (it is in stem of question) ACCEPT by active transport (assuming thermostable enzymes)
				max 2	blue / stain, diffuses out = 2 marks
3	(c)		accuracy take readings at intermediate temperatures (between 50 °C – 70 °C) ;		Mark first suggestion only DO NOT CREDIT wider temperature range OR more temperatures unqualified OR more regular intervals ACCEPT take readings every 5 degrees / °C ACCEPT ref. to haemocytometer ACCEPT colorimeter used to measure colour intensity of blue solution DO NOT CREDIT ref to use of c <u>a</u> lorimeter
			<i>reliability</i> take more, readings at each temperature / repetitions ;	2	ACCEPT repeat experiment (ideally 3 readings for each temperature), increase the number of cells observed ACCEPT replica / replicate for repeat

Q	Question		Expected Answers	Marks	Additional Guidance
3	(d)		nucleus divides / mitosis ;		ACCEPT asexual reproduction / cloning IGNORE cell splits, ref to genetically identical cells
			<i>idea of</i> : cell, swells on one side / bulges ;		IGNORE bud forms on side
			nucleus / cytoplasm / organelles, move into, bud / bulge ;		IGNORE replicated DNA enters bud
			pinches off / cell wall forms, (so bud becomes a separate cell) ;	max 2	ACCEPT cytokinesis IGNORE two cells are formed / bud separates unqualified
			Total	10	

Q	Question		Expected Answers	Marks	Additional Guidance
4	(a)	(i)	<i>plant cell / Y, has</i> : a wall ; chloroplasts ; vacuole ;	max 2	Credit reverse argument ACCEPT thylakoid, discs / membranes OR granum(a) IGNORE chlorophyll
4	(a)	(ii)	 A1 a vacuole ; E1 to take up water / to become turgid ; A2 cell wall thicker on one side ; E2 causes, cell to bend / open stoma(ta) ; A3 mitochondria ; 		Mark adaptation (A) as stand-alone Ensure explanation (E) stated is appropriately linked to adaptation DO NOT CREDIT curved cell wall / thick cell wall unqualified ACCEPT close stoma(ta) if adaptation correct IGNORE ref to chloroplasts
			E3 generates ATP (for active transport) ;	max 2	
4	(b)	(i)	two homologous chromosomes circled ;	1	ACCEPT one circle around both chromosomes or two circles The two chromosomes must be of same length

F2	F211			Mark Scheme	
4	(b)	(ii)	three chromosomes, one from each pair;		Chromosomes should be of different lengths however if two are of similar length, look for different centromere position to award mark
			chromosomes drawn as one bar ;		ACCEPT
					DO NOT CREDIT two joined together at centromere
					80
				2	-
			Total	7	

F2 ²	F211 Question		Mark S	June 2010	
C			Expected Answers	Marks	Additional Guidance
5	(a)	(i)	osmosis;	1	
		(ii)	2 = symplast (pathway) ; 3 = apoplast (pathway) ;	2	ACCEPT symplastic ACCEPT apoplastic
		(iii)	S;		

C	Questio	n	Expected Answers		Additional Guidance	
5	(b)	This is	a QWC question			
		1 water moves into xyle	m down water potential gradient ;		ACCEPT ψ for water potential	
					ACCEPT water moves from high ψ to low ψ	
		2 root pressure / high	(hydrostatic) pressure at bottom of xylem ;			
		3 water vapour loss / tra	anspiration / evaporation, at leaves / top of			
		(oracting) low (bydrog	plant;			
		4 (creating) low (nydros	tatic) pressure at top of xylem ;			
		5 water, under tension	/ pulled up (in a continuous column);		IGNORE drawn for pulled up	
		6 cohesion between w	ater molecules / described ;			
		7 adhesion of water me	blecules to xylem / described ;			
		8 capillary action / des	cribed;		ACCEPT ref to xylem being very narrow so water rises	
		9 water moves up (xyle	m / stem) by mass flow ;			
		10 from high(er) (hydros	static) pressure to low(er) (hydrostatic)			
		pre	ssure / down (hydrostatic) pressure gradient ;	max 4		
		QWC (three terms used	in correct context and spelt correctly);		Any three terms from the following :	
					water potential, hydrostatic pressure,	
					transpiration / evaporation, cohesion / cohesive,	
				1	adhesion / adhesive, tension, root pressure, capillary action / capillarity, mass flow	

Question	Expected Answers			Additional Guidance
5 (c)	xylem vessel phloem sieve tube element			One mark per row Both statements must be correct to achieve mark
	present absent	;		DO NOT CREDIT ticks and crosses
	present absent	;		
	(water and), minerals / ions / salts / botosynthesis / sucrose / assimilates / amino acids / minerals / ions / salts / plant 'hormones'	;		Read whole list – if any suggestion is wrong then do not award mark XYLEM DO NOT CREDIT 'nutrients' OR 'water' alone PHLOEM ACCEPT 'sugar' in place of sucrose IGNORE unspecified 'solutes' DO NOT CREDIT glucose
	(only) up stemboth directions // towardsup and down /leavesfrom source to sink	;		ACCEPT arrows ↑ (xylem) ↓↑ (phloem) DO NOT CREDIT 'all directions' IGNORE ref to pits / lateral movement
	Total		13	

Mark Scheme

Question		on	Expected Answers	Marks	Additional Guidance		
6	(a)		a single value between 67 and 80 ; ;		two marks for correct answer		
				max 2	If answer incorrect, allow one mark for appropriate working i.e. 60 divided by time from trace selected by candidate		
6	(b)		heart rate, slower / lower / reduced / 60 – 63 beats per minute ;		Mark first point on each numbered line ACCEPT length of one beat is longer DO NOT CREDIT 'slows heart's activity'		
			rest period / diastole longer ;		ACCEPT T wave elongated / increases from 0.24s to 0.32s / increases by 0.1 s IGNORE name of chamber		
			ventricle takes longer to contract / ventricular systole longer ;	max 2	ACCEPT R wave slightly elongated / increases from 0.07s to 0.12s / increases by 0.05 s		
6	(c)		SAN, is pacemaker / initiates heart beat ;		ACCEPT <i>starts</i> , wave of excitation / action potential / electrical impulse IGNORE 'sends out' (wave)		
			(SAN sends) impulse / wave of excitation, over atria (walls) ;		IGNORE <i>through / to</i> , the atrium DO NOT CREDIT signal / message for impulse, allow ecf DO NOT CREDIT pulse		
			AVN delays impulse ; (AVN) sends impulse down, septum / bundle of His / Purkyne fibres ;	max 3	IGNORE delays contraction ACCEPT Purkinje		
			Total	7			

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

